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FIXED POINT THEOREMS FOR MAPPINGS IN
d-COMPLETE TOPOLOGICAL SPACES

Valeriu Popa

Abstract. Fixed point theorems are given for pairs of mappings
satisfying an implicit relation defined on d-complete topological spaces.

1. Introduction

Let (X, τ) be a topological space and d : X × X → [0,∞) such that
d(x, y) = 0 if and only if x = y.X is said to be d-complete if

∑∞
n=1 d(xn, xn+1) <

∞ implies that the sequence xn is convergent in (X, τ). Complete metric
spaces and quasicomplete metric spaces are examples of d-complete topologi-
cal spaces. If d satisfies and d(x, y) = d(y, x), ∀x, y ∈ X, then d is a symmetric
on X. Recently, Hicks [1], Hicks and Rhoades [2] and Saliga [5] proved several
fixed point theorems in d-complete topological spaces. Let T : X → X be a
mapping, T is ω-continuous at x if xn → x implies Txn → Tx as n→ ∞.

The following family of real functions was introduced by M.A.Khan,
M.S.Khan and S,Sessa in [4]. Let φ denote the family of all real functions
φ : R3

+ → R+ satisfying the following conditions:
(C1): φ is lower semi-continuous in each coordinate variable,
(C2). Let v,w ∈ R+ such that v ≥ φ(w, v,w) or v ≥ φ(w,w, v).

Then v ≥ h.w, where h = φ(1, 1, 1) > 1.
In [5] Saliga proved the following.

Theorem 1. Let (X, τ, d) be a d-complete topological spaces where d is
a continuous symmetric. Let A, B map C, a closed subset of X, into (onto)
X such that C ⊂ A(C), C ⊂ B(C) and

d(Ax,By) ≥ g
(
d(x, y), d(Ax, x), d(By, y)

)
for all x, y in C

where g ∈ φ. Then A and B have a common fixed point in C.

The purpose of this paper is to prove some fixed point theorems which
generalize Theorem 1 and others for mappings satisfying an implicit relation.
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2. Implicit relations.

Let F (t1, . . . , t4) : R4
+ → R be a continuous mapping.We define the

following properties:
(H1): There exists h > 1 such that for every u ≥ 0, v ≥ 0 with F (u, v, u, v) ≥ 0
or F (u, v, v, u) ≥ 0 we have u ≥ hv.
(H2): There exists h > 1 such that for every u > 0, v > 0 with F (u, v, u, v) ≥ 0
or F (u, v, v, u) ≥ 0 we have u ≥ hv.
(H3): F (0, v, 0, v) ≥ 0 or F (0, v, v, 0) ≥ 0 implies v = 0.
(Hu): F (u, u, 0, 0) < 0,∀u > 0.

Ex.1.

F (t1, . . . t4) = t1 − (at22 + bt23 + ct24 + dt1t3)1/2

where a > 1, 0 < c < 1 and 0 < b+ d < 1.
(H1): Let u ≥ 0, v ≥ 0 and F (u, v, u, v) = u − (av2 + bu2 + cv2 + du2) ≥ 0.

Then u ≥ (
a+ c

1 − b− d

1/2

· v = h1v, where h1 =
a+ c

1 − b− d

1/2

> 1. Let u ≥ 0,

v > 0 and F (u, v, v, u) = u − (av2 + bv2 + cu2 + duv)1/2 ≥ 0 which implies
u2(1 − c) − duv − v2(a + b) ≥ 0. Then f(t) = t2(1 − c) − dt − (a + b) ≥ 0
where t =

u

v
. Since f(0) < 0 and f(1) < 0 then there exists h2 > 1 such that

f(h2) = 0 and f(t) ≥ 0 for t ≥ h2, thus u ≥ h2v. If v = 0 then u ≥ h2v. For
h = min{h1, h2} it follows that u ≥ hv.
(Hu): F (u, u, 0, 0) = u(1 − a1/2 < 0, ∀u > 0.

Ex.2.

F (t1, . . . , t4) = t1 max{t1, t3, t4} − t2(at2 + bt3 + ct4)

where a > 1, b, c ≥ 0.
(H2) Let u > 0, v > 0 be and let F (u, v, u, v) = umax{u, v}−v(av+bu+cv) ≥
0.

If v ≥ u then uv(1 − a − b − c) ≥ 0, a contradiction. Then u > v and
u2 − v2(a+ b+ c) ≥ 0 which implies u ≥ hv, where h = (a+ b+ c)1/2 > 1.

Similary, if F (u, v, v, u) ≥ 0 then u ≥ hv.
(H3): F (0, v, 0, v) = −(a + c)v ≥ 0 implies v = 0. Similary, F (0, v, v, 0) ≥ 0
implies v = 0
(Hu): F (u, u, 0, 0) = u2(1 − a) < 0, ∀u > 0.

Ex.3.

F (t1, . . . , t4) = t1 max{t1, t2, t4} − at2 min{t2, t3, t4}
where a > 1.
(H2): Let u > 0, v > 0 and F (u, v, u, v) = max{u, v} − avmin{u, v} ≥ 0. If
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v ≥ u then uv(1 − a) ≥ 0, a contradiction. Thus u > v and u ≥ hv, where
h = a1/2 > 1.
(H3): F : (0, v, 0, v) = 0 and H3 is not satisfied.
(H4): F (u, u, 0, 0) = u2 > 0, ∀u > 0 and (Hu) is not satisfied.

3. Main results

Theorem 2. Let C be a subset of a d-topological space (X, τ, d) and
suppose that A, B map C into(onto) X such that C ⊂ A(C), C ⊂ B(C).
Moreover,we assume that

F (d(Ax,By), d(x, y), d(x,Ax), d(y,By)) ≥ 0(1.1)

for all x, y in X, where F satisfies condition (Hu). Then A and B have at
most one common fixed point.

Proof. Suppose that A and B have two common fixed points z, z′ with
z �= z′. Then by (1) we have succesively

F (d(Az,Bz′), d(z, z′)d(z,Az), d(z′ , Bz′)) ≥ 0

F (d(z, z′), d(z, z′), 0, 0) ≥ 0,

a contradiction of (Hu).

Theorem 3. Let (X, τ, d) be a d-complete topological space where d is
a continuous symmetric. Let A and B map C,a closed subset of X into(onto)
X such that C ⊂ A(C), C ⊂ B(C). If A, B satisfies the inequality (1) for all
x, y in C where F satisfies condition (H1) Then A and B have a common
fixed point. Further, if F satisfies in addition condition (Hu) then the common
fixed point is unique.

Proof. Let x0 ∈ C Since C ⊂ A(C) there exists x1 ∈ C such that
Ax1 = x0. Now C ⊂ B(C) so there exists x2 ∈ C such that Bx2 = x1. Build
the sequence xn by Ax2n+1 = x2n, Bx2n+2 = x2n+1. Now, if x2n+1 = x2n for
some n, the x2n+1 is a fixed point of A. Then, by (1) we have successively

F (d(Ax2n+1, Bx2n+2), d(x2n+1, x2n+2), d(x2n+1,

Ax2n+1), d(x2n+2, Bx2n+2)) ≥ 0

F (d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n+1, x2n), d(x2n+2, x2n+1)) ≥ 0

F (0, d(x2n+1, x2n+2), 0, d(x2n+2, x2n+1)) ≥ 0.

By (H1) 0 ≥ h.d(x2n+1, x2n+2). Therefore x2n+1 = x2n+2 and Bx2n+1 =
Bx2n+2 = x2n+1. Therefore x2n+1 is a common fixed point of A and B. Now
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if x2n+1 = x2n+2 for some n, then by (1) we have succesively

F (d(Ax2n+3, Bx2n+2), d(x2n+2, x2n+3), d(x2n+3,

Ax2n+3), d(x2n+2, Bx2n+2)) ≥ 0
F (d(x2n+2, x2n+1), d(x2n+2, x2n+3), d(x2n+3, x2n+2), d(x2n+2, x2n+1)) ≥ 0

F (0, d(x2n+2, x2n+3), d(x2n+3, x2n+2), 0) ≥ 0.

By (H1) 0 ≥ h.d(x2n+3, x2n+2). Hence x2n+2 = x2n+3. Thus Ax2n+2 =
Ax2n+3 = x2n+2 and x2n+2 is a fixed point of A also.

Suppose that xn �= xn+1 for all n. By (1) we have succesively

F (d(Ax2n+1, Bx2n+2), d(x2n+1, x2n+2), d(x2n+1,

Ax2n+1), d(x2n+2, Bx2n+2)) ≥ 0
F (d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n+1, x2n), d(x2n+1, x2n+2)) ≥ 0

Again by (H1) we have

d(x2n+1, x2n) ≥ h.d(x2n+1, x2n+2)

or

d(x2n+1, x2n+2) ≤
1
h
.d(x2n, x2n+1).

Also

F (d(Ax2n+3, Bx2n+2), d(x2n+3, x2n+2),
d(x2n+3, Ax2n+3), d(x2n+2, Bx2n+2)) ≥ 0

By (H1) we get

d(x2n+2, x2n+3) ≤
1
h
.d(x2n+1, x2n+2).

By induction gives

d(xn+1, xn+2) ≤ (
1
h

)n.d(x0, x1).

Thus
∞∑

n=1

d(xn+1, xn+2) ≤
∞∑

n=1

(
1
h

)n+1d(x0, x1)

X is d-complete so xn → p where p ⊂ C, since C is closed. We also have
x2n → p and n → ∞. This gives Ax2n+1 → p and Bx2n+2 → p as n → ∞.
Since p ∈ C, p ∈ A(C) and p ∈ B(C), so there exist v,w ∈ C such that
Av = p and Bw = p. Now

F
(
d(Ax2n+1, Bw

)
, d(x2n+1, w),

d(x2n+1, Ax2n+1), d(Bw,w)) ≥ 0
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Since F is continuous, letting n→ ∞ gives

F
(
0, d(p,w), 0, d(p,w)

)
≥ 0(1.2)

and by (H1) we have 0 ≥ h.d(p,w). Hence p = w. Also

F (d(Av,Bx2n+2), d(v, x2n+2), d(Av, v), d(x2n+2 , Bx2n+2)) ≥ 0

Letting n→ ∞ gives

F (0, d(v, p), d(v, p), 0) ≥ 0(1.3)

and by (H1) 0 ≥ h.d(p, v). Hence p = v. Therefore, Ap = Av = p = Bv = Bp.
If F satisfies condition (Hu) by Theorem 2 p is the unique common

fixed point of A and B.

Theorem 4. Let (X, τ, d) be a d-complete topological space where d is
a continuous symmetric. Let A and B map C, a closed subset of X, into(onto)
X such that C ⊂ A(C), C ⊂ B(C). If A and B satisfies inequality (1) for all
x, y in C, where F satisfies condition (H2) and (H3), then A and B have a
common fixed point.

Further, if F satisfies in addition condition (Hu), then the common fixed
point is unique.

Proof. As in Theorem 3 xn is a Cauchy sequence and so lim xn = p.
Since p ∈ C, p ∈ A(C) AND p ∈ B(C), so that exist v,w ∈ C such that
Av = p and Bw = p. As in Theorem 3 we have (2) which implies by (H3)
that d(p,w) = 0. As in Theorem 3 we have (3) which implies by (H3) that
v = p. Therefore Ap = Av = p = Bv = Bp. If F satisties condition (Hu) by
Theorem 2 p is the unique common fixed point of A and B.

Theorem 5. Let (X, τ, d) be a d-complete topological Hausdorff space
where d is a continuous symmetric. Let A and B map C, a closed subset
of X, into(onto) X, such that C ∈ A(C), C ∈ B(C). If A and B satisfies
inequality (1) for all x, y in C, where F satisfies condition (H2) and A and
B are continuous, then A and B have a common fixed point.

Proof. As in Theore 3 xn is a Cauchy sequence and so has an unique
limit p. By the continuity of

A,A(p) = A(lim x2n+1) = limAx2n+1 = lim xn = p.

Similary B(p) = p.
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