FIXED POINT THEOREMS FOR MAPPINGS IN d-COMPLETE TOPOLOGICAL SPACES

Valeriu Popa

Abstract. Fixed point theorems are given for pairs of mappings satisfying an implicit relation defined on d-complete topological spaces.

1. Introduction

Let (X, τ) be a topological space and $d: X \times X \to [0, \infty)$ such that d(x, y) = 0 if and only if x = y.X is said to be *d*-complete if $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$ implies that the sequence x_n is convergent in (X, τ) . Complete metric spaces and quasicomplete metric spaces are examples of *d*-complete topological spaces. If *d* satisfies and $d(x, y) = d(y, x), \forall x, y \in X$, then *d* is a symmetric on *X*. Recently, Hicks [1], Hicks and Rhoades [2] and Saliga [5] proved several fixed point theorems in *d*-complete topological spaces. Let $T: X \to X$ be a mapping, *T* is ω -continuous at *x* if $x_n \to x$ implies $Tx_n \to Tx$ as $n \to \infty$.

The following family of real functions was introduced by M.A.Khan, M.S.Khan and S,Sessa in [4]. Let ϕ denote the family of all real functions $\phi: R^3_+ \to R_+$ satisfying the following conditions:

 (C_1) : ϕ is lower semi-continuous in each coordinate variable,

(C₂). Let $v, w \in R_+$ such that $v \ge \phi(w, v, w)$ or $v \ge \phi(w, w, v)$.

Then $v \ge h.w$, where $h = \phi(1, 1, 1) > 1$.

In [5] Saliga proved the following.

Theorem 1. Let (X, τ, d) be a d-complete topological spaces where d is a continuous symmetric. Let A, B map C, a closed subset of X, into (onto) X such that $C \subset A(C)$, $C \subset B(C)$ and

 $d(Ax, By) \ge g(d(x, y), d(Ax, x), d(By, y))$ for all x, y in C

where $g \in \phi$. Then A and B have a common fixed point in C.

The purpose of this paper is to prove some fixed point theorems which generalize Theorem 1 and others for mappings satisfying an implicit relation.

AMS (MOS) Subject Classification 1991. Primary: 54H25.

Key words and phrases: d-topological space, fixed point.

2. Implicit relations.

Let $F(t_1,\ldots,t_4): R^4_+ \to R$ be a continuous mapping. We define the following properties:

 (H_1) : There exists h > 1 such that for every $u \ge 0, v \ge 0$ with $F(u, v, u, v) \ge 0$ or $F(u, v, v, u) \ge 0$ we have $u \ge hv$.

 (H_2) : There exists h > 1 such that for every u > 0, v > 0 with $F(u, v, u, v) \ge 0$ or $F(u, v, v, u) \ge 0$ we have $u \ge hv$.

 (H_3) : $F(0, v, 0, v) \ge 0$ or $F(0, v, v, 0) \ge 0$ implies v = 0.

 (H_u) : $F(u, u, 0, 0) < 0, \forall u > 0.$

Ex.1.

$$F(t_1, \dots, t_4) = t_1 - (at_2^2 + bt_3^2 + ct_4^2 + dt_1t_3)^{1/2}$$

where a > 1, 0 < c < 1 and 0 < b + d < 1. (H₁): Let $u \ge 0$, $v \ge 0$ and $F(u, v, u, v) = u - (av^2 + bu^2 + cv^2 + du^2) \ge 0$. Then $u \ge \left(\frac{a+c}{1-b-d}\right)^{1/2} \cdot v = h_1 v$, where $h_1 = \frac{a+c}{1-b-d} > 1$. Let $u \ge 0$, v > 0 and $F(u, v, v, u) = u - (av^2 + bv^2 + cu^2 + duv)^{1/2} \ge 0$ which implies $u^{2}(1-c) - duv - v^{2}(a+b) \ge 0$. Then $f(t) = t^{2}(1-c) - dt - (a+b) \ge 0$ where $t = \frac{u}{v}$. Since f(0) < 0 and f(1) < 0 then there exists $h_2 > 1$ such that $f(h_2) = 0$ and $f(t) \ge 0$ for $t \ge h_2$, thus $u \ge h_2 v$. If v = 0 then $u \ge h_2 v$. For $h = \min\{h_1, h_2\}$ it follows that u > hv. (H_u) : $F(u, u, 0, 0) = u(1 - a^{1/2} < 0, \forall u > 0.$

Ex.2.

$$F(t_1,\ldots,t_4) = t_1 \max\{t_1,t_3,t_4\} - t_2(at_2 + bt_3 + ct_4)$$

where $a > 1, b, c \ge 0$. (H_2) Let u > 0, v > 0 be and let $F(u, v, u, v) = u \max\{u, v\} - v(av + bu + cv) \ge u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\} - v(av + bu + cv) \le u \max\{u, v\}$ 0.

If $v \ge u$ then $uv(1 - a - b - c) \ge 0$, a contradiction. Then u > v and $u^{2} - v^{2}(a + b + c) \ge 0$ which implies $u \ge hv$, where $h = (a + b + c)^{1/2} > 1$. Similarly, if $F(u, v, v, u) \ge 0$ then $u \ge hv$.

 $(H_3): F(0, v, 0, v) = -(a + c)v \ge 0$ implies v = 0. Similarly, $F(0, v, v, 0) \ge 0$ implies v = 0

 (H_u) : $F(u, u, 0, 0) = u^2(1-a) < 0, \forall u > 0.$

Ex.3.

$$F(t_1,\ldots,t_4) = t_1 \max\{t_1,t_2,t_4\} - at_2 \min\{t_2,t_3,t_4\}$$

where a > 1. (H_2) : Let u > 0, v > 0 and $F(u, v, u, v) = \max\{u, v\} - av \min\{u, v\} \ge 0$. If $v \ge u$ then $uv(1-a) \ge 0$, a contradiction. Thus u > v and $u \ge hv$, where $h = a^{1/2} > 1$. (H₃): F : (0, v, 0, v) = 0 and H₃ is not satisfied. (H₄): $F(u, u, 0, 0) = u^2 > 0$, $\forall u > 0$ and (H_u) is not satisfied.

3. Main results

Theorem 2. Let C be a subset of a d-topological space (X, τ, d) and suppose that A, B map C into(onto) X such that $C \subset A(C), C \subset B(C)$. Moreover, we assume that

(1.1)
$$F(d(Ax, By), d(x, y), d(x, Ax), d(y, By)) \ge 0$$

for all x, y in X, where F satisfies condition (H_u) . Then A and B have at most one common fixed point.

Proof. Suppose that A and B have two common fixed points z, z' with $z \neq z'$. Then by (1) we have successively

$$F(d(Az, Bz'), d(z, z')d(z, Az), d(z', Bz')) \ge 0$$

$$F(d(z, z'), d(z, z'), 0, 0) \ge 0,$$

a contradiction of (H_u) .

Theorem 3. Let (X, τ, d) be a d-complete topological space where d is a continuous symmetric. Let A and B map C, a closed subset of X into(onto) X such that $C \subset A(C)$, $C \subset B(C)$. If A, B satisfies the inequality (1) for all x, y in C where F satisfies condition (H_1) Then A and B have a common fixed point. Further, if F satisfies in addition condition (H_u) then the common fixed point is unique.

Proof. Let $x_0 \in C$ Since $C \subset A(C)$ there exists $x_1 \in C$ such that $Ax_1 = x_0$. Now $C \subset B(C)$ so there exists $x_2 \in C$ such that $Bx_2 = x_1$. Build the sequence x_n by $Ax_{2n+1} = x_{2n}$, $Bx_{2n+2} = x_{2n+1}$. Now, if $x_{2n+1} = x_{2n}$ for some n, the x_{2n+1} is a fixed point of A. Then, by (1) we have successively

$$F(d(Ax_{2n+1}, Bx_{2n+2}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, x_{2n+2})) \ge 0$$

$$F(d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, x_{2n}), d(x_{2n+2}, x_{2n+1})) \ge 0$$

$$F(0, d(x_{2n+1}, x_{2n+2}), 0, d(x_{2n+2}, x_{2n+1})) \ge 0.$$

By (H_1) $0 \ge h.d(x_{2n+1}, x_{2n+2})$. Therefore $x_{2n+1} = x_{2n+2}$ and $Bx_{2n+1} = Bx_{2n+2} = x_{2n+1}$. Therefore x_{2n+1} is a common fixed point of A and B. Now

if $x_{2n+1} = x_{2n+2}$ for some *n*, then by (1) we have successively

$$F(d(Ax_{2n+3}, Bx_{2n+2}), d(x_{2n+2}, x_{2n+3}), d(x_{2n+3}, Ax_{2n+3}), d(x_{2n+2}, Bx_{2n+2})) \ge 0$$

$$F(d(x_{2n+2}, x_{2n+1}), d(x_{2n+2}, x_{2n+3}), d(x_{2n+3}, x_{2n+2}), d(x_{2n+2}, x_{2n+1})) \ge 0$$

$$F(0, d(x_{2n+2}, x_{2n+3}), d(x_{2n+3}, x_{2n+2}), 0) \ge 0.$$

By (H_1) $0 \ge h.d(x_{2n+3}, x_{2n+2})$. Hence $x_{2n+2} = x_{2n+3}$. Thus $Ax_{2n+2} = Ax_{2n+3} = x_{2n+2}$ and x_{2n+2} is a fixed point of A also.

Suppose that $x_n \neq x_{n+1}$ for all n. By (1) we have succesively

$$F(d(Ax_{2n+1}, Bx_{2n+2}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, Ax_{2n+1}), d(x_{2n+2}, Bx_{2n+2})) \ge 0$$

 $F(d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, x_{2n}), d(x_{2n+1}, x_{2n+2})) \ge 0$

Again by (H_1) we have

$$d(x_{2n+1}, x_{2n}) \ge h.d(x_{2n+1}, x_{2n+2})$$

or

$$d(x_{2n+1}, x_{2n+2}) \le \frac{1}{h} d(x_{2n}, x_{2n+1}).$$

Also

$$F(d(Ax_{2n+3}, Bx_{2n+2}), d(x_{2n+3}, x_{2n+2}), d(x_{2n+3}, Ax_{2n+3}), d(x_{2n+2}, Bx_{2n+2})) \ge 0$$

By (H_1) we get

$$d(x_{2n+2}, x_{2n+3}) \le \frac{1}{h} \cdot d(x_{2n+1}, x_{2n+2}).$$

By induction gives

$$d(x_{n+1}, x_{n+2}) \le (\frac{1}{h})^n . d(x_0, x_1).$$

Thus

$$\sum_{n=1}^{\infty} d(x_{n+1}, x_{n+2}) \le \sum_{n=1}^{\infty} (\frac{1}{h})^{n+1} d(x_0, x_1)$$

X is d-complete so $x_n \to p$ where $p \subset C$, since C is closed. We also have $x_{2n} \to p$ and $n \to \infty$. This gives $Ax_{2n+1} \to p$ and $Bx_{2n+2} \to p$ as $n \to \infty$. Since $p \in C$, $p \in A(C)$ and $p \in B(C)$, so there exist $v, w \in C$ such that Av = p and Bw = p. Now

$$F(d(Ax_{2n+1}, Bw), d(x_{2n+1}, w), d(x_{2n+1}, Ax_{2n+1}), d(Bw, w)) \ge 0$$

Since F is continuous, letting $n \to \infty$ gives

(1.2)
$$F(0, d(p, w), 0, d(p, w)) \ge 0$$

and by (H_1) we have $0 \ge h.d(p, w)$. Hence p = w. Also

$$F(d(Av, Bx_{2n+2}), d(v, x_{2n+2}), d(Av, v), d(x_{2n+2}, Bx_{2n+2})) \ge 0$$

Letting $n \to \infty$ gives

(1.3)
$$F(0, d(v, p), d(v, p), 0) \ge 0$$

and by $(H_1) \ 0 \ge h.d(p, v)$. Hence p = v. Therefore, Ap = Av = p = Bv = Bp.

If F satisfies condition (H_u) by Theorem 2 p is the unique common fixed point of A and B.

Theorem 4. Let (X, τ, d) be a d-complete topological space where d is a continuous symmetric. Let A and B map C, a closed subset of X, into(onto) X such that $C \subset A(C)$, $C \subset B(C)$. If A and B satisfies inequality (1) for all x, y in C, where F satisfies condition (H_2) and (H_3) , then A and B have a common fixed point.

Further, if F satisfies in addition condition (H_u) , then the common fixed point is unique.

Proof. As in Theorem 3 x_n is a Cauchy sequence and so $\lim x_n = p$. Since $p \in C$, $p \in A(C)$ AND $p \in B(C)$, so that exist $v, w \in C$ such that Av = p and Bw = p. As in Theorem 3 we have (2) which implies by (H_3) that d(p, w) = 0. As in Theorem 3 we have (3) which implies by (H_3) that v = p. Therefore Ap = Av = p = Bv = Bp. If F satisfies condition (H_u) by Theorem 2 p is the unique common fixed point of A and B.

Theorem 5. Let (X, τ, d) be a d-complete topological Hausdorff space where d is a continuous symmetric. Let A and B map C, a closed subset of X, into(onto) X, such that $C \in A(C)$, $C \in B(C)$. If A and B satisfies inequality (1) for all x, y in C, where F satisfies condition (H₂) and A and B are continuous, then A and B have a common fixed point.

Proof. As in Theore 3 x_n is a Cauchy sequence and so has an unique limit p. By the continuity of

 $A, A(p) = A(\lim x_{2n+1}) = \lim Ax_{2n+1} = \lim x_n = p.$

Similary B(p) = p.

4. References

- Hicks, T. L.: Fixed point theorems for d-complete topological spaces, I. Internat. J. Math. and Math. Sci., 15(1992), 435-440.
- [2] Hicks, T. L. and Rhoades B. E.: Fixed point theorems for d-complete topological spaces II, Math.Japonica, 37(1992), 847-853.
- [3] Hicks, T. L. and Saliga: Fixed point theorems for non-self maps II, Math.Japonica, 30(1993), 953-956.
- [4] Khan, M. A., Khan, M. S. and Sessa, S.: Some theorems on expansion mappings and their fixed points, Demonstratio Math. 19(1986), 673-683.
- [5] Saliga, L. M.: Fixed point theorems for non-self maps in d-complete topological spaces, Internat.J.Math.Sci. 19(1996), 103-110.

Department of Mathematics University of Bacău 5500 Bacău Romania E-mail:vpopa@ub.ro