FIXED POINT THEOREMS FOR MAPPINGS IN d-COMPLETE TOPOLOGICAL SPACES

Valeriu Popa

Abstract. Fixed point theorems are given for pairs of mappings satisfying an implicit relation defined on d-complete topological spaces.

1. Introduction

Let (X, τ) be a topological space and $d : X \times X \to [0, \infty)$ such that $d(x, y) = 0$ if and only if $x = y \cdot X$ is said to be d-complete if $\sum_{n=1}^{\infty} d(x_n, x_{n+1})$ ∞ implies that the sequence x_n is convergent in (X, τ) . Complete metric spaces and quasicomplete metric spaces are examples of d-complete topological spaces. If d satisfies and $d(x, y) = d(y, x), \forall x, y \in X$, then d is a symmetric on X. Recently, Hicks [1], Hicks and Rhoades [2] and Saliga [5] proved several fixed point theorems in d-complete topological spaces. Let $T : X \to X$ be a mapping, T is ω -continuous at x if $x_n \to x$ implies $Tx_n \to Tx$ as $n \to \infty$.

The following family of real functions was introduced by M.A.Khan, M.S.Khan and S,Sessa in [4]. Let ϕ denote the family of all real functions $\phi: R_+^3 \to R_+$ satisfying the following conditions:

 (C_1) : ϕ is lower semi-continuous in each coordinate variable,

 (C_2) . Let $v, w \in R_+$ such that $v \ge \phi(w, v, w)$ or $v \ge \phi(w, w, v)$.

Then $v > h.w$, where $h = \phi(1, 1, 1) > 1$.

In [5] Saliga proved the following.

Theorem 1. Let (X, τ, d) be a d-complete topological spaces where d is *a continuous symmetric. Let* A*,* B *map* C*, a closed subset of* X*, into (onto)* X such that $C \subset A(C)$, $C \subset B(C)$ and

 $d(Ax, By) \ge g(d(x, y), d(Ax, x), d(By, y))$ for all x, y in C

where $q \in \phi$ *. Then* A and B have a common fixed point in C.

The purpose of this paper is to prove some fixed point theorems which generalize Theorem 1 and others for mappings satisfying an implicit relation.

AMS (MOS) Subject Classification 1991. Primary: 54H25.

Key words and phrases: d-topological space, fixed point.

2. Implicit relations.

Let $F(t_1,\ldots,t_4): R_+^4 \to R$ be a continuous mapping. We define the following properties:

 (H_1) : There exists $h > 1$ such that for every $u \geq 0, v \geq 0$ with $F(u, v, u, v) \geq 0$ or $F(u, v, v, u) \geq 0$ we have $u \geq hv$.

 (H_2) : There exists $h > 1$ such that for every $u > 0$, $v > 0$ with $F(u, v, u, v) \ge 0$ or $F(u, v, v, u) \geq 0$ we have $u \geq hv$.

 (H_3) : $F(0, v, 0, v) \ge 0$ or $F(0, v, v, 0) \ge 0$ implies $v = 0$.

 $(H_u): F(u, u, 0, 0) < 0, \forall u > 0.$

Ex.1.

$$
F(t_1, \ldots t_4) = t_1 - (at_2^2 + bt_3^2 + ct_4^2 + dt_1t_3)^{1/2}
$$

where $a > 1, 0 < c < 1$ and $0 < b + d < 1$. (H₁): Let $u \ge 0$, $v \ge 0$ and $F(u, v, u, v) = u - (av^2 + bu^2 + cv^2 + du^2) \ge 0$. Then $u \geq \left(\frac{a+c}{1-b-d}\right)$ $x^{1/2} \cdot v = h_1 v$, where $h_1 = \frac{a+c}{1-b-d}$ 1/2 $> 1.$ Let $u \geq 0$, $v > 0$ and $F(u, v, v, u) = u - (av^2 + bv^2 + cu^2 + dwv)^{1/2} > 0$ which implies $u^{2}(1-c) - duv - v^{2}(a+b) \ge 0$. Then $f(t) = t^{2}(1-c) - dt - (a+b) \ge 0$ where $t = \frac{u}{v}$. Since $f(0) < 0$ and $f(1) < 0$ then there exists $h_2 > 1$ such that $f(h_2) = 0$ and $f(t) \ge 0$ for $t \ge h_2$, thus $u \ge h_2v$. If $v = 0$ then $u \ge h_2v$. For $h = \min\{h_1, h_2\}$ it follows that $u > hv$. $(H_u): F(u, u, 0, 0) = u(1 - a^{1/2} < 0, \forall u > 0.$

Ex.2.

$$
F(t_1,\ldots,t_4)=t_1\max\{t_1,t_3,t_4\}-t_2(at_2+bt_3+ct_4)
$$

where $a > 1$, $b, c > 0$. (H_2) Let $u > 0$, $v > 0$ be and let $F(u, v, u, v) = u \max\{u, v\} - v(av + bu + cv) \ge$ 0.

If $v \ge u$ then $uv(1 - a - b - c) \ge 0$, a contradiction. Then $u > v$ and $u^{2} - v^{2}(a + b + c) \ge 0$ which implies $u \ge hv$, where $h = (a + b + c)^{1/2} > 1$. Similary, if $F(u, v, v, u) \geq 0$ then $u \geq hv$.

(H₃): $F(0, v, 0, v) = -(a + c)v \ge 0$ implies $v = 0$. Similary, $F(0, v, v, 0) \ge 0$ implies $v = 0$ $(H_u): F(u, u, 0, 0) = u^2(1 - a) < 0, \forall u > 0.$

Ex.3.

$$
F(t_1,\ldots,t_4)=t_1\max\{t_1,t_2,t_4\}-at_2\min\{t_2,t_3,t_4\}
$$

where $a > 1$. (H_2) : Let $u > 0$, $v > 0$ and $F(u, v, u, v) = \max\{u, v\} - av \min\{u, v\} \ge 0$. If $v \geq u$ then $uv(1-a) \geq 0$, a contradiction. Thus $u > v$ and $u \geq hv$, where $h = a^{1/2} > 1.$ (H_3) : $F: (0, v, 0, v) = 0$ and H_3 is not satisfied. (H₄): $F(u, u, 0, 0) = u^2 > 0$, $\forall u > 0$ and (H_u) is not satisfied.

3. Main results

Theorem 2. Let C be a subset of a d-topological space (X, τ, d) and *suppose that* A, B map C *into(onto)* X *such that* $C \subset A(C)$, $C \subset B(C)$ *. Moreover,we assume that*

(1.1)
$$
F(d(Ax, By), d(x, y), d(x, Ax), d(y, By)) \ge 0
$$

for all x*,* y *in* X*, where* F *satisfies condition* (Hu)*. Then* A *and* B *have at most one common fixed point.*

Proof. Suppose that A and B have two common fixed points z , z' with $z \neq z'$. Then by (1) we have succesively

$$
F(d(Az, Bz'), d(z, z')d(z, Az), d(z', Bz')) \ge 0
$$

$$
F(d(z, z'), d(z, z'), 0, 0) \ge 0,
$$

a contradiction of (H_u) .

Theorem 3. Let (X, τ, d) be a d-complete topological space where d is *a continuous symmetric. Let* A *and* B *map* C*,a closed subset of* X *into(onto)* X such that $C \subset A(C)$, $C \subset B(C)$. If A, B satisfies the inequality (1) for all x, y in C where F satisfies condition (H_1) Then A and B have a common *fixed point. Further, if* F *satisfies in addition condition* (Hu) *then the common fixed point is unique.*

Proof. Let $x_0 \in C$ Since $C \subset A(C)$ there exists $x_1 \in C$ such that $Ax_1 = x_0$. Now $C \subset B(C)$ so there exists $x_2 \in C$ such that $Bx_2 = x_1$. Build the sequence x_n by $Ax_{2n+1} = x_{2n}$, $Bx_{2n+2} = x_{2n+1}$. Now, if $x_{2n+1} = x_{2n}$ for some n, the x_{2n+1} is a fixed point of A. Then, by (1) we have successively

$$
F(d(Ax_{2n+1}, Bx_{2n+2}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1},
$$

\n
$$
Ax_{2n+1}), d(x_{2n+2}, Bx_{2n+2})) \ge 0
$$

\n
$$
F(d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, x_{2n}), d(x_{2n+2}, x_{2n+1})) \ge 0
$$

\n
$$
F(0, d(x_{2n+1}, x_{2n+2}), 0, d(x_{2n+2}, x_{2n+1})) \ge 0.
$$

By (H_1) $0 \geq h.d(x_{2n+1}, x_{2n+2})$. Therefore $x_{2n+1} = x_{2n+2}$ and $Bx_{2n+1} =$ $Bx_{2n+2} = x_{2n+1}$. Therefore x_{2n+1} is a common fixed point of A and B. Now if $x_{2n+1} = x_{2n+2}$ for some n, then by (1) we have succesively

$$
F(d(Ax_{2n+3}, Bx_{2n+2}), d(x_{2n+2}, x_{2n+3}), d(x_{2n+3},
$$

\n
$$
Ax_{2n+3}), d(x_{2n+2}, Bx_{2n+2})) \ge 0
$$

\n
$$
F(d(x_{2n+2}, x_{2n+1}), d(x_{2n+2}, x_{2n+3}), d(x_{2n+3}, x_{2n+2}), d(x_{2n+2}, x_{2n+1})) \ge 0
$$

\n
$$
F(0, d(x_{2n+2}, x_{2n+3}), d(x_{2n+3}, x_{2n+2}), 0) \ge 0.
$$

By (H_1) $0 \geq h.d(x_{2n+3}, x_{2n+2})$. Hence $x_{2n+2} = x_{2n+3}$. Thus $Ax_{2n+2} =$ $Ax_{2n+3} = x_{2n+2}$ and x_{2n+2} is a fixed point of A also.

Suppose that $x_n \neq x_{n+1}$ for all n. By (1) we have succesively

$$
F(d(Ax_{2n+1}, Bx_{2n+2}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, Ax_{2n+1}), d(x_{2n+2}, Bx_{2n+2})) \ge 0
$$

 $F(d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+1}, x_{2n}), d(x_{2n+1}, x_{2n+2})) \geq 0$

Again by (H_1) we have

$$
d(x_{2n+1}, x_{2n}) \geq h.d(x_{2n+1}, x_{2n+2})
$$

or

$$
d(x_{2n+1}, x_{2n+2}) \leq \frac{1}{h}.d(x_{2n}, x_{2n+1}).
$$

Also

$$
F(d(Ax_{2n+3}, Bx_{2n+2}), d(x_{2n+3}, x_{2n+2}),
$$

$$
d(x_{2n+3}, Ax_{2n+3}), d(x_{2n+2}, Bx_{2n+2})) \ge 0
$$

By (H_1) we get

$$
d(x_{2n+2}, x_{2n+3}) \leq \frac{1}{h}.d(x_{2n+1}, x_{2n+2}).
$$

By induction gives

$$
d(x_{n+1}, x_{n+2}) \leq (\frac{1}{h})^n \cdot d(x_0, x_1).
$$

Thus

$$
\sum_{n=1}^{\infty} d(x_{n+1}, x_{n+2}) \leq \sum_{n=1}^{\infty} (\frac{1}{h})^{n+1} d(x_0, x_1)
$$

X is d-complete so $x_n \to p$ where $p \subset C$, since C is closed. We also have $x_{2n} \to p$ and $n \to \infty$. This gives $Ax_{2n+1} \to p$ and $Bx_{2n+2} \to p$ as $n \to \infty$. Since $p \in C$, $p \in A(C)$ and $p \in B(C)$, so there exist $v, w \in C$ such that $Av = p$ and $Bw = p$. Now

$$
F(d(Ax_{2n+1}, Bw), d(x_{2n+1}, w), d(x_{2n+1}, Ax_{2n+1}), d(Bw, w)) \ge 0
$$

Since F is continuous, letting $n \to \infty$ gives

(1.2)
$$
F(0, d(p, w), 0, d(p, w)) \ge 0
$$

and by (H_1) we have $0 \geq h.d(p,w)$. Hence $p=w$. Also

$$
F(d(Av, Bx_{2n+2}), d(v, x_{2n+2}), d(Av, v), d(x_{2n+2}, Bx_{2n+2})) \ge 0
$$

Letting $n \to \infty$ gives

$$
(1.3) \tF(0, d(v, p), d(v, p), 0) \ge 0
$$

and by (H_1) $0 > h.d(p, v)$. Hence $p = v$. Therefore, $Ap = Av = p = Bv = Bp$.

If F satisfies condition (H_u) by Theorem 2 p is the unique common fixed point of A and B.

Theorem 4. Let (X, τ, d) be a d-complete topological space where d is *a continuous symmetric. Let* A *and* B *map* C*, a closed subset of* X*, into(onto)* X such that $C \subset A(C)$, $C \subset B(C)$. If A and B satisfies inequality (1) for all x, y in C, where F satisfies condition (H_2) and (H_3) , then A and B have a *common fixed point.*

Further, if F *satisfies in addition condition* (Hu)*, then the common fixed point is unique.*

Proof. As in Theorem 3 x_n is a Cauchy sequence and so $\lim x_n = p$. Since $p \in C$, $p \in A(C)$ AND $p \in B(C)$, so that exist $v, w \in C$ such that $Av = p$ and $Bw = p$. As in Theorem 3 we have (2) which implies by (H_3) that $d(p, w) = 0$. As in Theorem 3 we have (3) which implies by (H_3) that $v = p$. Therefore $Ap = Av = p = Bv = Bp$. If F satisties condition (H_u) by Theorem 2 p is the unique common fixed point of A and B.

Theorem 5. *Let* (X, τ, d) *be a* d*-complete topological Hausdorff space where* d *is a continuous symmetric. Let* A *and* B *map* C*, a closed subset of* X, into(onto) X, such that $C \in A(C)$, $C \in B(C)$. If A and B satisfies *inequality* (1) for all x, y in C, where F satisfies condition (H_2) and A and B *are continuous, then* A *and* B *have a common fixed point.*

Proof. As in Theore 3 x_n is a Cauchy sequence and so has an unique limit p. By the continuity of

$$
A, A(p) = A(\lim x_{2n+1}) = \lim Ax_{2n+1} = \lim x_n = p.
$$

Similary $B(p) = p$.

4. References

- [1] Hicks, T. L.: *Fixed point theorems for d-complete topological spaces*, I. Internat. J. Math. and Math. Sci., **15**(1992), 435-440.
- [2] Hicks, T. L. and Rhoades B. E.: *Fixed point theorems for d-complete topological spaces II*, Math.Japonica, **37**(1992), 847-853.
- [3] Hicks, T. L. and Saliga: *Fixed point theorems for non-self maps II*, Math.Japonica, **30**(1993), 953-956.
- [4] Khan, M. A., Khan, M. S. and Sessa, S.: *Some theorems on expansion mappings and their fixed points*, Demonstratio Math. **19**(1986), 673-683.
- [5] Saliga, L. M.: *Fixed point theorems for non-self maps in* d*-complete topological spaces*, Internat.J.Math.Sci. **19**(1996), 103-110.

Department of Mathematics University of Bacău 5500 Bacău Romania E-mail:vpopa@ub.ro